Робота з пробником істотно змінила наше
уявлення про електролітичні конденсатори,
їх якості та виробників...
Одним із найненадійніших радіоелементів в електронній апаратурі був і залишається електролітичний конденсатор. Найчастішою причиною виходу з ладу є «висихання» електроліту, що призводить до підвищення ESR (equivalent series resistance) еквівалентного послідовного опору (ЕПО). При вимірюванні тільки ємності «підсохлого» конденсатора різниця зі справним практично не видно. Крім того, в більшості випадків вимір ємності вимагатиме вилучення конденсатора зі схеми, що не завжди зручно, а процес випаювання – впаювання згубно відбивається на самих конденсаторах.
На підставі досвіду конструювання та експлуатації подібних приладів наводимо порівняння приладів різних видів та форматів для вимірювання та індикації еквівалентного послідовного опору (ЕПО, ESR) електролітичних конденсаторів.
Вимоги, покладені в основу розробки нашого приладу для перевірки електролітичних конденсаторів – індикатора еквівалентного послідовного опору:
1. Можливість перевіряти конденсатори не випаюючи зі схем.
1.1 Щоб зменшити вплив схеми, в якій стоїть електроліт, не нашкодити їй, і водночас мінімізувати її вплив на точність вимірювання, напруга на відкритих щупах не повинна перевищувати 200 мВ (менше відкривання напівпровідникових np переходів).
2. Портативність, зручність, практичність.
2.1 Прилад має бути виконаний у вигляді пробника, адже немає необхідності в точному вимірі ESR, похибка вимірювання в 20 - 30% цілком задовільна. До речі сказати з досвіду - нагрівання електролітичного конденсатора від кімнатної температури до температури пальців (33-35 град.) знижує ESR в середньому в 1,5 рази. Точний вимір ESR виправдано хіба що за умов заводів, які випускають електролітичні конденсатори, для поточного контролю продукції. Та й швидкість реакції на світлодіодну індикацію набагато швидше, ніж цифри дисплея. При цьому, щоб розширити діапазон вимірювання, логарифмічна індикація краща, ніж лінійна. Логарифмічна індикація дозволяє охопити ширший динамічний діапазон на тій самій кількості світлодіодів, ніж лінійна.
2.2 Прилад повинен бути акумуляторним з автономною роботою не менше 8 годин. Цього вистачить, щоб використовувати прилад на виїзних роботах, у відрядженнях не тягаючи з собою ще й адаптер, який важить більше, ніж сам прилад.
2.3 Захист від заряду вимірюваного конденсатора. Пробник не повинен бути пошкоджений або пошкодження повинні бути мінімальними у випадку, якщо вимірюваний конденсатор виявиться зарядженим.
3. Для забезпечення відповідної точності та усунення залежності індикації від ємності, у схемі повинен бути присутнім синхронний детектор.
4. Частота вимірювання має лежати в межах 30 – 200 кГц
Пробник – вимірювач – індикатор еквівалентного послідовного опору (ЕПО, ESR) електролітичних конденсаторів. Технічні характеристики останньої версії приладу
Прилад призначений для оцінки ESR (equivalent series resistance, еквівалентного послідовного опору, ЕПО) електролітичних конденсаторів без випаювання (від'єднання) із схем.
Змінна напруга на розімкнених щупах не більше 200 мВ, що виключає вплив зовнішніх ланцюгів на показання приладу, а напруга, що наводиться, не виведе зовнішні ланцюги з ладу.
Частота вимірювання 100 кГц +- 20%
Діапазон оцінюваного ESR 0.1 - 5.0 Ом.
Світлодіодна індикація з логарифмічною шкалою. Кількість світлодіодів індикації 10.
Діапазон ємностей конденсаторів, що перевіряються від 0,1 мкФ і більше.
При під'єднанні витримує розряд конденсаторів напругою до 50 В.
Живлення від вбудованого Li-ion акумулятора.
Повної зарядки акумулятора вистачає на 10 годин безперервної роботи приладу.
Тривалість повної зарядки не більше 3 годин.
Схема контролю зарядки вбудована в прилад.
Зарядний адаптер - від мобільних пристроїв Nokia старого зразка (тип ACP-7E 3.7V 355mA 1.3VA).
Пробник – вимірник – індикатор ESR (еквівалентного послідовного опору, ЕПО) електролітичних конденсаторів (електролітів). Спрощена конструкція (прототип) для перевірки електролітів.
Достатня простота конструкції пробника та ефективність у роботі, перевірена вже 10-річним досвідом експлуатації як у майстерні, так і на виїзді. Прилад призначений для оцінки ESR (equivalent series resistance, еквівалентного послідовного опору, ЕПО) електролітичних конденсаторів без випаювання (від'єднання) зі схем.
Змінна напруга на розімкнених щупах не більше 200 мВ.
Частота вимірювання 40 кГц + - 20%
Діапазон оцінюваного ESR 0.2 - 5.0 Ом ділиться на 2 піддіапазони 0.2 - 1.0 Ом і 1.0 - 5.0 Ом.
Світлодіодна індикація з логарифмічною шкалою. Кількість світлодіодів індикації 5.
Діапазон ємностей конденсаторів, що перевіряються від 1,0 мкФ і більше.
При під'єднанні витримує розряд конденсаторів напругою до 300 В.
Живлення здійснюється від вбудованого Ni-Cd акумулятора номінальною напругою 6 В, ємністю 80 мА/ч.
Повної зарядки акумулятора вистачає на 6 годин безперервної роботи приладу.
Тривалість повної зарядки не більше 3 годин.
Схема контролю зарядки вбудована в прилад.
Зарядний адаптер - від мобільних пристроїв Nokia старого зразка (тип ACP-7E 3.7V 355mA 1.3VA).
Мал.2 Зовнішній вигляд готової конструкції пробника - індикатора ESR електролітичних конденсаторів.
Мал.3 Вид приладу для перевірки електролітичних конденсаторів із боку друкованої плати.
Рис.4 Структурна схема пробника - індикатора ESR електролітичних конденсаторів. частотою 35-40 кГц, обмежувач, що служить для запобігання пошкодженню, якщо вимірюваний конденсатор виявиться зарядженим, підсилювач високої частоти з коефіцієнтом посилення, що перемикається, детектор, індикатор, стабілізатор напруги і акумулятор зі схемою заряду.
Рис.5 Принципова схема пробника - індикатора ESR електролітичних конденсаторів.
Задающий генератор виконаний на мікросхемі КМОП (CMOS) D1 40106 - 6-ти тригерах Шмідта, що дозволило спростити схему і включити 5 елементів як вихідного буфера. Відомо, що при мінімальній напрузі живлення буферні властивості КМОП елементів, як і будь-яких інших, також падають до мінімуму. Резистори R2 і R3 утворюють дільник, що визначає вихідну напругу на розімкнутих щупах. Діоди VD13, VD14 оберігають виходи мікросхеми D1 від попадання напруги, що опинилися між щупами внаслідок вимірювань конденсаторів, що "виявилися" зарядженими, або при "випадковому" включенні в робочий ланцюг. Від аналогічних випадків захищають підсилювач високої частоти діоди VD1, VD2 та резистор R5.
Підсилювач високої частоти виконаний на транзисторі VT2, і служить для підвищення чутливості при вимірюванні малих значень еквівалентного послідовного опору. Для того, щоб забезпечити вимірювання діапазону ESR 0.2 - 5.0 Ом за допомогою 5-світлодіодного логарифмічного індикатора, діапазон розбили на 2 піддіапазони. Перемикання між піддіапазонами здійснюється перемикачем S1, який змінює коефіцієнт посилення підсилювача високої частоти (УВЧ). Посилення УВЧ на піддіапазоні 1.0 - 5.0 Ом становить орієнтовно 5 і регулюється підбором R8, а на піддіапазоні 0.2 - 1.0 Ом орієнтовно 25 і регулюється мініатюрним підстроювальним резистором (триммером) R10. Цим же резистором в процесі регулювання добиваємося суміщення піддіапазонів.
Індикатор виконаний на мікросхемі DA1 BA6137 (повні прямі аналоги NTE1866, KA2285B, LB1423N, AN6884, GL1223), що є Мікросхема включає активний амплітудний детектор, підсилювач постійного струму, набір компараторів і ключі управління світлодіодами з обмежувачами струму. Мікросхема забезпечує логарифмічну індикацію рівня. Резистор R13 призначений для зниження рівня споживання світлодіодами, коли щупи не під'єднані і всі світлодіоди горять.
Тепер кілька слів про вибір робочої частоти приладу. Ці мікросхеми призначені для індикації рівня сигналу звукової частоти та містять активний амплітудний детектор. Принаймні у мікросхеми BA6137 на частотах вхідного сигналу вище 40 кГц спостерігалася невідповідність між рівнем сигналу і кількістю світлодіодів, що горять / не горять. Наприклад, на частоті 45 кГц і ESR = 1 Ом спалахує лише 1 світлодіод, ESR = 1.8 Ом - 2 світлодіоди (це правильно), а якщо ESR = 5.0 Ом, гасли все, що відповідало ESR < 1 Ом, що врешті-решт призведе до визначення несправного конденсатора як справний. З іншого боку, щоб знизити вплив ємності на показання, бажано вибирати частоту вище (100 - 200 кГц). Тому робочу частоту необхідно підібрати максимально високою, при якій зберігається відповідність показань приладу. Для калібрування та перевірки відповідності шкалі рівнів як джерело ESR можна використовувати безіндукційні опори, наприклад типу МОН.
Для забезпечення стабільності параметрів живлення критичних ланцюгів забезпечується через стабілізатор напруги, зібраний на транзисторах VT3 і VT4. Достоїнство такої схеми стабілізатора - високий коефіцієнт стабілізації і, на відміну від багатьох інтегральних стабілізаторів (voltage regulators), він не дасть вихідну напругу, якщо вхідна впала нижче за рівень, необхідний для забезпечення заданої вихідної напруги (функція UVLO under voltage lock out). Практично, прилад не ввімкнеться і індикатор не загориться, якщо напруга акумулятора впала нижче 3,3 В.
У приладі застосований нікель - кадмієвий акумулятор 3,6 Вольт 80 мА/год. Оскільки ці акумулятори відрізняються невибагливістю, то схема зарядки складністю не відрізняється. На транзисторі VT5 зібрано обмежувач напруги заряду, що обмежує його до 4.5 В.
Прилад зібраний на друкованій платі розміром 140 х 18 мм (формат пробника). Ще одна перевага такої конструкції – немає необхідності мудрувати щупи – адже до їх конструкції та якості пред'являються дуже жорсткі вимоги. У нашому пробнику щупи виконані зі шматка прута діаметром 2,0 - 2.2 мм для високотемпературного паяння (лок). Активний щуп має довжину 50 мм., пасивний – 100 мм.
Налагодження правильно зібраного приладу здійснюється в наступній послідовності:
- Вимикаємо акумулятор.
- Контроль напруги на колекторі VT3 в межах 3.0 - 3.1 Вольт при вхідній напрузі 3.6 - 4.5 В, при необхідності встановлюють підбором R14 та/або R15.
- Підключаємо вольтметр до колектора VT3, а регульоване джерело живлення до його емітера. Починаючи з напруги джерела 2.0 поступово збільшуємо його до точки включення стабілізатора (спостерігається по стрибкоподібному підвищенню напруги на колекторі VT3). Напруга на емітері VT3 повинна бути в межах 3.3 - 3.4 В. Зменшити напругу включення можна трохи знизивши R18. Щоб знову виміряти напругу точки включення, необхідно встановити на регульованому джерелі живлення напругу нижче 2.0 В, вимкнути його, витримати паузу, поки стабілізатор скинеться, включити джерело і знову підвищувати напругу, контролюючи напругу на колекторі VT3. Такий порядок пояснюється тим, що стабілізатор має якість тригера.
- Послідовне налагодження можна проводити з підключеним та зарядженим акумулятором.
- За критеріями, описаними раніше, підбираємо частоту генератора резистором R1.
- Встановити S1 у ліве (за схемою положення).
- Підключити до щупів резистор опором 4,7 Ом і, підбираючи R8, домогтися, щоб горіли 4 з 5 світлодіодів індикатора.
- Встановити S1 у праве (за схемою положення).
- Підключити до щупів резистор опором 0,8 Ом і, повертаючи двигун R10, знову домогтися, щоб горіли 4 з 5-ти світлодіодів індикатора.
На цьому налагодження можна вважати закінченим.
Загалом варто відзначити, що правильно зібрані пробники з R10, заміненим на постійний 220 Ом, задовільно працювали навіть без налагодження.
Шляхи модернізації прототипу пробника - індикатора ESR (equivalent series resistance)
Після випуску першої версії пробника (прототипу) минуло близько 10-ти років, елементна база змінилася за цей час, тому вирішили описати кілька напрямків, за якими ми модернізували наші робочі зразки, які зараз випускаємо.
- Застосуванням синхронного детектора позбавитися залежності показань приладу від ємності конденсатора, що перевіряється. Застосування синхронного детектора накладає умову - відсутність фазових зрушень у ланцюгах виміру. Відповідна адаптація ланцюгів вимірювання призвела до зниження порогової напруги на вимірюваному конденсаторі, при якому вхідні ланцюги (генератора та обмежувача) можуть вийти з ладу. Тобто ланцюги, що підключаються до вимірюваного конденсатора, стають більш "ніжними". Ще один менш істотний аспект - ускладнюється введення у схему функції вимірювання (оцінки) ємності конденсатора, що вимірюється. Але, як показала практика, доцільність такої функції є досить низькою. Тому від цієї функції вимірювання ємності електроліту виключили вже на етапі прототипу, де вона реалізовувалась досить простими засобами (додаванням в схему одного конденсатора і одного перемикача).
- Використання літій-іонного Li-ion акумулятора. При цьому знизиться вага та габарити приладу та збільшиться час роботи від акумулятора. Це вимагатиме застосування зарядного процесора (battery management).
- Ще можна замінити стабілізатор на дискретні елементи на інтегральний. Доведеться підібрати інтегральний стабілізатор з функцією UVLO (under voltage lock out) або організувати її іншими способами.
Словом, немає межі досконалості....
Підсумок. Зібраний пробник - вимірник еквівалентного послідовного опору виявився одним із найбільш затребуваних приладів у майстерні, на який не шкода витратити час і зусилля з розробки та збирання. Після появи в бік професійного цифрового вимірювача ESR вже ніхто не дивиться. Спочатку їм перевіряли ще раз показання зібраного пробника - вимірювача, потім закинули далеко на полицю. Причому, коли стало питання, що одного пробника явно недостатньо, вирішили знову зайнятися розробкою але більш досконалої конструкції на сучасній елементній базі. Від старого варіанту залишився тільки формат приладу: малогабаритний ручний акумуляторний пробник - індикатор на світлодіодах із зовнішнім зарядним адаптером, де прибрано всі додаткові функції на зменшення габаритів і точності вимірювання ESR і розв'язки залежності показань від ємності.
14 вересня 2014 р. м. Одеса